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Abstract. We report calculations of the energy spectra of shallow-acceptor impurities in
GaAs/Ga1−xAl xAs quantum dots in the presence of external magnetic fields. We calculate the
binding energies of the ground and excited acceptor states in the effective-mass approximation using
a formalism based on a four-band model that includes the coupling of the spin to the magnetic field
as well as the valence-band mixing. The potential of the acceptor is taken to be the screened
Coulomb potential of a point charge, and we take into account the mismatch of the dielectric
constant through the method of image charges. We present a complete analysis of the acceptor
binding energies as a function of the lateral confinement of the quantum dot and as a function of
the magnetic field strength. We also discuss the role of the mixing of heavy holes and light holes
in determining the acceptor spectrum in the different regimes of confinement.

1. Introduction

Low-dimensional semiconductor structures have been the subject of many theoretical and
experimental investigations during the last few years. New effects originating from the
decreased dimensionality of these systems have been predicted theoretically and are the basis
of potential applications to novel optical and electronic devices [1]. Recent advances in nano-
fabrication techniques have made possible the realization of one-dimensional structures or
quantum wires, and zero-dimensional structures, called quantum dots. These quantum nano-
structures are fabricated starting from a quantum well structure, which is modified by
lithographic and etching techniques to achieve the lateral confinement [2, 3]. The electronic
and optical properties of these nanostructures are strongly modified with respect to those of
the host materials due to the quantum confinement effects [4,5].

The energy spectrum for residual, or intentionally introduced, impurities in low-
dimensional systems is important both as a fundamental problem and also because of its
relevance to the fabrication of electronic devices. Shallow-impurity-related properties of
quantum wells, quantum wires, and quantum dots have been the subject of extensive research in
the last few years. The physical properties of these quantum heterostructures can be artificially
varied over a wide range, and a large spread of impurity binding energies can be obtained.
Most of the calculations have shown that due to the higher degree of confinement in quantum
dots the impurity binding energies are larger than those for impurities in quantum wells and
quantum wires [6].
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As for bulk semiconductors, the electronic energy spectra of low-dimensional systems
are strongly affected by the presence of external fields. In the case of quantum wires and
quantum dots, in the presence of a magnetic field, there is an interesting competition between
the magnetic confinement and the geometrical confinement, which greatly influences their
electronic and optical properties. Shallow-impurity states in quantum wells in the presence of
an external magnetic field have been extensively investigated. Many interesting experimental
and theoretical results have been reported [7]. In the case of impurities in quantum dots in
magnetic fields, most of the theoretical work has concentrated on donor states, using the
single-band effective-mass approximation [8]. The calculations of the impurity acceptor
states are much more complex than those of the corresponding donor states because of the
mixing of the associated valence bands in the bulk semiconductor. Only a few papers [9, 10]
dealing with calculations on the acceptor energy spectrum of highly confined systems have
been reported, and they do not include the presence of a magnetic field. In this paper we
investigate theoretically the influence of an external magnetic field on the energy levels of
ground and excited shallow-acceptor states in quantum dots. We calculate the impurity states
in the effective-mass approximation using a formalism based on a four-band model that includes
the coupling of the spin to the magnetic field as well as the complicated valence-band structure
of the host semiconductor. We assume that the quantum dot has the shape of a quantum disc
obtained from a laterally confined GaAs/Ga1−xAl xAs quantum well structure. The magnetic
field is applied parallel to the disc axis. We present calculations for the energy spectrum and
the binding energies of a centred acceptor impurity as a function of the dot radius and magnetic
field.

2. Theory

The effective-mass Hamiltonian for the acceptor impurity in the quantum dot in the presence
of a magnetic field is a 4× 4 matrix operator:

H = Hk +Hc +Ha (1)

whereHk is the kinetic energy of the holes, given by the Luttinger–Kohn Hamiltonian in the
axial approximation [11]. It describes the dispersion of the08 valence band, and it includes
the magnetic field applied in thez-direction:

Hk =
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kz = −i
∂

∂z
.

Theγ1, γ2, γ3, andκ are the Luttinger parameters describing the valence band of each material
composing the quantum well. The cyclotron frequency is given byωe = eB/m0c, whereB is
the applied magnetic field andm0 is the bare-electron mass.

The geometric confinement potentials for the heavy holes and the light holes are included
in the diagonal HamiltonianHc. They are modelled by a superposition of a quantum well
potential and a lateral parabolic potential; this is

[Hc]ii = V02(|z| − L/2) +
1

2
m∗i ω

2
giρ

2. (3)

Here2(x) is the Heaviside function,V0 is the barrier height given by the valence-band dis-
continuity, andL is the well width.ωgi is the frequency associated with the lateral geometrical
confinement, and the in-plane effective masses for holes are given bym∗i = (γ1 + γ2)

−1m0,
with i = 1, 4 for heavy holes, andm∗i = (γ1− γ2)

−1m0, with i = 2, 3 for light holes.
Ha is the potential of an acceptor impurity located on thez-axis which includes the infinite

set of image charges originating from the dielectric mismatch between the well and barrier
materials [12]. For an impurity located onz = z0 we have

Ha =
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(4)

where

β = εw − εb
εw + εb

andεw (εb) is dielectric constant in the well (barrier).
The acceptor effective Hamiltonian,H , acts on a four-component envelope function

F = (F1, F2, F3, F4), and the electronic wavefunction is given approximately by

ψ(Er) =
4∑
ν=1

Fν(Er)uν0(Er) (5)

where theuν0(Er) are the08 Bloch functions.
To solve the eigenvalue problem for the HamiltonianH , we expand each component of

the envelope function of the acceptor impurity,Fν , in a complete set of basis functions which
are separable in the coordinates in the plane of the disc(ρ, φ), and the coordinatez along the
disc axis:

FJν (Er) =
nf (ν)∑
n=1

RJνn (ρ, φ)f
ν
n (z). (6)
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Thez-dependent functionsf νn are the solutions of the one-dimensional problem for a heavy
hole (ν = 1, 4) or for a light hole (ν = 2, 3) in a quantum well. We have neglected the
contribution of the continuum states, andn runs over all of the discrete levels in the quantum
well. The indexJ denotes thez-component of the total angular momentum of the hole, and
it is a good quantum number for an impurity located on the axis of the quantum disc. For
any other location of the impurity, the lateral confinement potential destroys the cylindrical
symmetry, and we should expand the quantum dot envelope function in terms of functions of
different angular momenta.

The radial functions in the expansion (4) are developed in a restricted set of Gaussian
functions with length parametersαk fixed a priori to cover the relevant physical region and
ensure convergence:

RJνn (ρ, φ) =
∑
m

Cνnmei(J−S(ν))φρ|J−S(ν)|e−αmρ
2
. (7)

On substituting equation (7) in equation (6), the eigenvalue problem for the acceptor
Hamiltonian,HF = EF , turns into a linear set of coupled equations for the coefficients of
the expansion,Cνnm. The matrix elements of the kinetic energy operatorHk and the quantum
dot confinement potentialHc are calculated analytically. For the calculation of the matrix
elements of the impurity potential, we use the following expression:

1√
ρ2 + ξ2

=
∫ ∞

0
e−|ξ |yJ0(ρy) dy

whereJ0(x) is the Bessel function of zero order. This procedure permits us perform the
summation of the infinite series of image charges, as well as all of the integrations over the
coordinates, analytically. Only the integration over the variabley, in the above equation, is
calculated numerically.

3. Results

To obtain accurate acceptor energies and wavefunctions we have used a basis of 25 Gaussians,
with parametersλj covering the range from 1 Å to 1000 Å for the in-plane coordinates.
In what follows we present results for the spectrum and the binding energies of a shallow-
acceptor impurity in a quantum dot in the presence of an external magnetic field. All of
the numerical calculations have been performed for a quantum dot obtained by confining a
GaAs/Ga0.65Al 0.35As quantum well laterally. The well width has been fixed atL = 40 Å.
We have used the following Luttinger parameters for GaAs (AlAs):γ1 = 7.65 (4.04),
γ2 = 2.41 (0.78), γ3 = 3.28 (1.57), κ = 1.2 (0.12), and the dielectric constant was taken to
be ε = 12.56 (9.8). The parameters for Ga1−xAl xAs are obtained by linear interpolation.
We have assumed a valence-band offset of 35% and a band-gap discontinuity given by
1Eg = 1.36x + 0.22x2.

To represent the geometrical lateral confinement we define a quantum disc radiusR in
terms of the expectation value of the in-plane coordinateρ2 in the ground state,

R =
√
〈ρ2〉 =

√
h̄/m∗i ωgi .

In the presence of the magnetic field there is an additional confinement induced by the field,
and we can then define an effective lateral radius

Reff =
√
h̄/m∗i ωieff .

Here

ωieff =
√
ω2
gi + ω2

ci/4
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is the frequency of the harmonic oscillator, the solution of the eigenvalue problem for the
effective-mass hole Hamiltonian (2) in the diagonal approximation (ωci being the effective
cyclotronic frequency). This effective radius can be expressed in terms of the lateral radiusR,
and the Landau radius

RL =
√
hc/eB

as

Reff = RRL

(R4
L +R4/4)1/4

.

The impurity binding energy is governed by the competition between two characteristic lengths,
the effective Bohr radius of the acceptor in the bulk (r∗B ≈ 67 Å), and the effective lateral radius
Reff . In terms of this radius we can differentiate two different limits for the lateral confinement:
the strong-confinement regime, forReff � r∗B , in which case the binding energy should be
essentially dominated by the lateral confinement showing a 1/

√
(R2

eff +L2) dependence, and
the weak-confinement regime, forReff � r∗B , where it is the Coulomb interaction that plays
the most important role and the binding energies should display a 1/R2

eff dependence.

Figure 1. The dependences of
the ground-state binding energies
of a centred acceptor impurity in
a quantum dot on the dot radius.
The figure displays curves for some
selected magnetic field values.

Figure 1 shows the ground-state binding energies of the centred acceptor as functions
of the lateral confinement of the quantum dot. We have plotted curves for several values of
the magnetic field, for quantum dot radii ranging fromR = 30 Å to R = 400 Å. In the
high-confinement regime we obtain the expected linear behaviour with 1/

√
(R2

eff +L2) of the
binding energies. In particular, in the absence of a magnetic field, a similar result was found
by Xia in his work on acceptors in spherical quantum dots [10], in which he found that the
binding energy decreases with 1/Rs , whereRs is the sphere radius.
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In the case of zero magnetic field and for decreasing lateral confinement, the impurity
binding energy tends to the corresponding value for a 40 Å quantum well, which is approx-
imately 30 meV for the parameters adopted. For finite values of the magnetic field the figure
gives a good illustration of the competition between the geometrical confinement and the
magnetic field confinement. We can see, for radii lower than 40 Å, that the binding energies
are essentially dominated by the lateral geometrical confinement, giving values of the binding
energy that are almost the same for all of the values of the field.

Figure 2. Binding energies of the
ground state and of the first excited
state, for a centred acceptor in a
quantum dot, as functions of the
lateral confinement. In the inset
of the figure we have plotted the
binding energies as functions of the
inverse of the square of the effective
lateral radius.

Figure 2 also shows the dependence of the impurity binding energy on the lateral con-
finement strength, represented by the radius of the quantum dot. In this case we have plotted
the ground state and the first excited state for low values of magnetic fields. It is interesting
to note that in the weak-confinement regime, for dot radii greater than 150 Å, the different
set of curves, for the ground and first excited state, have the same separation in energy. This
is a consequence of the linear magnetic field dependence is this regime of confinement. This
feature can also be seen in the inset included in the figure, where we have plotted the binding
energies as functions of 1/R2

eff . The different curves correspond to the ground and first excited
state. The expected linear dependence of the binding energies on 1/R2

eff , for Reff > a∗B , is
clearly evident. The Bohr radius for the excited state is larger than that corresponding to the
ground state, and in consequence the linear behaviour arises for the larger effective radii as
is illustrated in the inset. In this inset the slopes of the curves are proportional to the inverse
of the effective mass of the acceptor in the plane. For the excited state the slope is three
times the corresponding slope for the ground state. This is easy to understand because in the
weak-confinement regime the lateral confinement energy acts as a correction to the Coulomb
energy.
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Figure 3. The magnetic field dep-
endences of the binding energies
of the ground state (GS) and the
first excited state (ES), for a centred
acceptor in a quantum dot. The
figure displays curves for some
selected dot radii.

Figure 3 shows the dependence of the acceptor binding energy on the magnetic field up to
30 T for five different quantum dot lateral radii. We have plotted in each case the ground state
(GS) and the first excited state (ES). It is clearly observed that for strong lateral confinement,
i.e.R = 30 Å andR = 50 Å, the acceptor binding energies are not affected by the magnetic
field up to 30 T. This is because for those values of the magnetic field the lateral confinement is
stronger than the confinement induced by the magnetic field (forB = 30 T the Landau radius
isRL ≈ 47 Å), and the behaviour of the impurity binding energies depends fundamentally on
the quantum-size confinement.

In the weak-lateral-confinement regime, forR = 200 Å andR = 900 Å, the binding
energy is almost insensitive to the geometrical lateral confinement. For low magnetic fields
the Coulomb interaction plays the most important role as regards the behaviour of the acceptor
binding energy. When the field increases, the binding energies begin to be controlled by the
magnetic confinement, displaying a

√
B-dependence. In the case ofR = 100 Å there is a

competition between the confining energies for a large range of magnetic field values.
In figure 4 we have plotted the acceptor energy levels as functions of the magnetic field

for three different values of the lateral dot radius. We show in the same figure the calculations
including (solid symbols) and neglecting (empty symbols) the effect of the mixing of heavy
holes and light holes. If we do not take into account the band mixing, we know that, in the
weak-confinement regime, the acceptor energies are dominated by the hole impurity Coulomb
interaction, and the effect of the lateral confinement appears as a correction to the energy of
an impurity in a quantum well. This term increases quadratically with the effective frequency
with a curvature proportional to the inverse of the heavy-hole in-plane effective mass. On the
other hand, for large dots (R > a∗0) and for large values of the magnetic field (RL < a∗0), the
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Figure 4. Acceptor energy spectra calculated including (solid symbols) and neglecting (empty
symbols) the effect of the mixing of heavy and light holes. The figure displays curves for some
selected dot radii.

acceptor energies have a linear dependence on the magnetic field, whose slope is given by the
inverse of the heavy-hole in-plane effective mass. We see from the figure that, in both regimes,
the slope decreases when the mixing is taken into account, giving clear evidence of an increase
of the effective mass which is due to the presence of the light holes.

In figure 5 we compare the magnetic field dependence of the impurity binding energies
calculated with (solid symbols) and without (empty symbols) the band mixing. It displays
curves for some selected dot radii. The features shown by the binding energies as functions of
the magnetic field can be easily understood by considering the results obtained for the ground-
state impurity energy, shown in figure 4, and the corresponding analysis given in the previous
section.

The quantum dot energies without impurity have a linear dependence on the effective
frequency, and, therefore, in the weak-confinement regime, the binding energies present the
same dependence on the effective frequency. This leads to a linear dependence of the binding
energies with the magnetic field for very low lateral confinement, as we can observe for
R = 900 Å, in the figure. In the strong-confinement limit, for large values of the magnetic
field, the binding energies calculated with and without band mixing follow the same dependence
with the magnetic field; this is 1/

√
(R2

eff +L2). We can see that the slopes of the curves are
almost the same for the two cases, showing them to be independent of the in-plane effective
mass. This is an expected result if one considers the behaviour of the acceptor energies,
previously analysed.
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Figure 5. Impurity binding ener-
gies as functions of the magnetic
field calculated including (solid
symbols) and neglecting (empty
symbols) the effect of the mixing of
heavy and light holes. The figure
displays curves for some selected
dot radii.

The figure shows that for all cases the binding energy increases when the band mixing
is taken into account. A simple semiclassical argument shows that the radius of an impurity
depends inversely on the mass; therefore an increase in the interaction energy is again evidence
of an increase of the in-plane hole effective mass.

4. Summary

To summarize, we have investigated the effect of the quantum-size confinement and the effect
of an external magnetic field on the ground and the lowest-lying excited states of a centred
acceptor impurity in a quantum dot. We have taken into account the mismatch of the dielectric
constant and the mixing of the heavy holes and the light holes using a four-band model within
the effective-mass approximation.

Our method allows computations of the energies and wavefunctions of the ground state
and the excited states of an acceptor impurity in a quantum dot for a large range of confinement
parameters and magnetic field strengths. It can easily be extended to apply to any position of the
impurity in the dot. We have presented a complete analysis of the magnetic field dependence
of the impurity binding energies in different confinement regimes. The results illustrate the
competition between the magnetic field confinement and the quantum-size confinement. We
have also studied the effect of the valence-band mixing on the spectrum and the binding energies
of the acceptor impurity for a wide range of confinement parameters.

Although, to our knowledge, no experimental results involving acceptor impurity states in
quantum dots in magnetic fields have been reported, we hope that our results might be useful
in the interpretation of future experimental data.
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